
QUANTUM  MECHANICS 
 

(cont’d) 

 

 

2. In search of a mathematical formulation 

 

 

 

2.1  Heisenberg’s Matrix Mechanics 

 

 

Werner Heisenberg  formulated a mathematical theory in 

which  classical “measureables” (like position, momentum, 

energy, time…)  could be represented by matrices. 

 

One “strange”  thing about matrices is that they do not 

commute under multiplication: 

 

   q . p      p. q 
 

In fact, Heisenberg showed that for certain pairs of 

variables (known as complementary variables, and whose 

units are energy x time) , the relation: 

 

   q . p  -  p . q   = h/2 =   

 

thus leading to the uncertainty relation. 

 



Except for this result, Heisenberg’s matrix mechanics was 

not particularly useful.  However it formed the basis of 

other formulations based on non-commuting operators 

(notably by Paul A.M. Dirac).  These later approaches are 

today considered “the best” formulations of quantum 

mechanics, but are mathematically quite involved. 

 

 

 

 

2.2 Bohr’s semiclassical approach 
 

At the other extreme, Neils Bohr  adopted a classical 

approach to which quantum “fixes” were made.  This 

proved very useful in simple cases, but has severe 

limitations.  The fact that it works at all can be attributed to 

the complementarity principle, namely that in the limit as 

things get larger the quantum equations must give the same 

results as classical physics. 

 

We take as an example of the semiclassical approach 

Bohr’s solution of the hydrogen atom. 

 

Consider an electron orbiting a hydrogen nucleus.  The 

electrostatic attraction between the two must provide the 

centripetal force: 
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The energy of the electron is given by: 
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Bohr further assumed that the angular momentum is 

quantised in unit multiples of some constant: 

  

  mvr n nh    2 1 2 3 , , ... 
 

This is a central assumption of quantum mechanics with 

far-reaching implications (not discussed here).  This 

assumption can however be explained in terms of 

 de Broglie’s standing-wave interpretation: 
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where the circumference of the orbit is a whole multiple of 

the wavelength.  Thus, Bohr’s quantization of angular 

momentum means that the orbit of the electron  should 

support a standing wave. 

 

Returning to the main derivation,  substituting the 

quantization condition into (1) gives: 
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Putting in some numbers, for n=1 (the ground state),  

r=5.3 x 10-11m, which agrees with experiment. 

 

Substituting this result into (2) gives: 

 

    
E

me

n


 









4

2

0

2 2

2 4

1

   

 

Again putting in some numbers, for n = 1,  

E = -2.18 x 10-18 J    or  -13.6eV     (1eV = 1.6 x 10-19J). 

 

This is exactly the energy required to remove the electron 

from the hydrogen atom (the ionization energy). 

 

Bohr’s model fitted experiment even more closely than 

that.  The spectral lines emitted by hydrogen were shown to 

follow the relation: 
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Using Planck’s formula  E = hf = hc/, 
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so the emission of a photon of energy E can be explained in 

terms of a transition of an electron from the energy level m 

to the energy level n, thus providing an explanation for the 

existence of line spectra. 

 

 

 

 

 

2.3 Schrodinger’s wave equation 
 

The most immediately “useful” mathematical approach to 

quantum mechanics was that taken by Erwin Schrodinger.  

It provided a relatively simple algebraic equation that could 

be solved in a number of different cases to give useful 

results. 

 

Starting from de Broglie’s hypothesis of “matter waves”, 

he reasoned that just as classical (ray) optics is an 

approximation to wave optics, so classical (particle) 

mechanics may be an approximation to wave mechanics. 

 

 

 

 

 

 



This wave will have to follow the wave equation: 
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Suppose the wave has a standing-wave form: 

 

   y x t x t( , ) ( ) cos( )       

Substituting, 
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Notice that the cos terms cancel, leaving a time-

independent equation.  This is because we chose a 

standing-wave solution. 

Hence: 
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Now, the kinetic energy ½ mv2 of a particle is not usually 

known: however,  the total energy E is the sum of the 

potential energy U and the kinetic energy, so: 
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which is Schrodinger’s time-independent equation that can 

be used to solve for the stationary states of a particle or 

system of particles.  

 

There is also a time-dependent Schrodinger equation, 

obtained without making the standing-wave assumption.     

The TISE can be used to evaluate the time-evolution of a 

system.  The TDSE can be obtained as a special case of the 

TISE, which is therefore considered to be more 

fundamental than the TDSE. 

 

The TDSE is usually written as: 
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where the left-hand term is an operator indicating the total 

energy of the system, called the Hamiltonian operator: 

 

 EH  
 

 

 



If we take the analogy with classical mechanics further,  

 

UmvEU
dx

d

m











 2

2

22

2

1
represents

2


 

So: 

 

 
 

m

mv
mv

dx

d

m 22

1
represents

2

2

2

2

22








  
 

 

and: 
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(the reason for the –ve sign is not discussed here) 

 

This means that the wave-function can give us the 

momentum of a particle by solving the eigenvalue problem: 
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Thus, in the formal QM, the momentum of a particle is  

represented by the operator dxdi /  

 

 

 

 



Similarly, the position of the particle is the solution of the 

trivial equation: 

  

 xx  

 

(mathematically, the x on the left is an operator while the x 

on the right is an eigenvalue).  Clearly this equation only 

“makes sense” when  is zero everywhere except at a 

single point, when it takes value 1 (a delta-function).  For 

more “reasonable” functions, the position of the particle 

cannot be defined exactly. 

 

The delta-function has no derivative, hence the momentum 

of a particle of with a precisely known position is 

undefined.  Similarly, a momentum eigenstate  is of the 

form ikxAe which is a wave that exists everywhere along the 

x-axis.  Thus, the Schrodinger equation supports 

Heisenberg’s Uncertainty Principle. 

 

Operators, particularly if they contain derivatives, are non-

commutating, and this provides the link between 

Schrodinger’s wave mechanics and Heisenberg’s matrix 

scheme.  A measurement of position followed by a 

measurement of momentum can be represented by: 
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while the reverse sequence of events can be represented by: 
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The two sequences of operations will give different results, 

as indicated by the commutator: 
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which is numerically equivalent to Heisenberg’s 

Uncertainty Principle. 

 

The equation H=E  is known to mathematicians as an 

eigenvalue problem, and in the general case has a solution 

only for particular values of E.   These eigenvalues can be 

obtained without fully solving the equation, and correspond 

to the permitted energy states of the system. 

 

 

 



It can thus be seen that the discrete energies of stationary 

states, which had to be put in as a special assumption in 

Bohr’s theory, arises naturally from Schrodinger’s 

equation.   

 

 The potential energy U describes the system in which the 

particle is moving  For example, in the hydrogen atom U is 

spherically symmetric and has the form: 
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A solution of Schrodinger’s equation with this potential, 

which is complicated mathematically only because it has to 

be done in 3-D using polar coordinates, gives: 
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which is identical to Bohr’s semiclassical result. 

 

Although in many cases it is sufficient to find the 

eigenvalues of the TDSE, it can also be solved completely 

to find .    In general, for each  eigenvalue there will be a 

corresponding eigenfunction (also called an eigenvector). 

 

 

 



 This will be a wave-like function that describes the “matter 

wave” corresponding to the particle having that energy.  As 

a solution to the wave equation, this “matter wave” behaves 

like a wave in all respects - it undergoes superposition, 

diffraction, interference and so on.    

 

 

 

 

 

 

 

 

 

 

  r1 and r2 correspond to the Bohr radii for n=1 and  n=2. 

 

So, Schrodinger’s model shows that the “matter wave” has 

maximum amplitude at the radii predicted by Bohr’s 

semiclassical theory, which agrees with experiment. 

 

 

There is however a fundamental difference between Bohr’s 

model and Schrodinger’s. 

 

In Bohr’s model the electron is definitely a particle: it is 

orbiting in a precise orbit with a well-defined velocity and 

radius.  From Heisenberg’s uncertainty principle, we know 

that this cannot be so. 
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Schrodinger’s result paints the “matter wave” as being 

spread out over space and so agrees with the uncertainty 

principle.  On the other hand, what is meant by a “matter 

wave”?   How can anything as particle-like as an electron 

be “smeared out” over a relatively large area? 

 

Born’s interpretation of Schrodinger’s wavefunction was as 

the probability of finding the electron at that point: the 

electron is still a point-like particle but spends different 

amounts of time in different places, with a well-defined 

probability of being in a given place even though we cannot 

say which place it will be in at any time.   This 

interpretation of quantum mechanics therefore replaces the 

definite trajectories of classical mechanics with 

probabilities.  Since “real” objects contain very many 

atoms, these probability densities are sufficient to allow 

averages to be taken and macroscopic conclusions drawn. 

 

 

 

The problems start when one starts thinking about just one 

particle… 


