Lecture 10: The nature of heat

Let's get the basic concepts right:
What is heat?
What is temperature?

Heat flows from a "hotter" object to a "colder" one. In doing so, the hotter object cools and the colder object warms.

Two objects are at the same temperature when there is no heat flow between them.

This is the $0^{\text {th }}$ law of thermodynamics

Temperature is measured in terms of arbitrary units called degrees. On the Celsius scale, the temperature of melting ice is called " 0 " and that of boiling water " 100 " .

The method of mixtures permits a quantitative investigation of the way heat flows and of the quantity of heat required to raise the temperature of a certain object by a certain temperature.

Suppose I have 1 kg of water at $20^{\circ} \mathrm{C}$ and 1 kg of water at $40^{\circ} \mathrm{C}$. If I mix them, the resulting 2 kg of water will have a temperature of $30^{\circ} \mathrm{C}$

Heat behaves like a fluid whose volume is conserved and which always tends to the same level - the 'caloric' theory.

The gas laws

The study of gases provided the first insights into the nature of heat because:

- the thermal properties of gases are relatively simple
- the necessary experiments were quite simple

The steam engine provided a link between heat and mechanical energy - through the working of gas.

What are the attributes of a gas?
PRESSURE the force exerted per unit area. Unit: $\mathrm{N} \mathrm{m}^{-2}$ (Pa).

VOLUME measured in m^{3}

TEMPERATURE measured in degrees

Robert Boyle (1627-1691) investigated the variation of volume with pressure.

Squeeze a gas, it gets smaller.

Boyle's Law: For a fixed mass of gas, at constant temperature, the pressure is inversely proportional to volume.

Jacques Charles (1747-1823) investigated the variation of volume with temperature.

Cool a gas, and it contracts.

Charles's Law: For a fixed mass of gas, at constant pressure, the volume varies linearly with temperature.

Absolute zero

Although Charles's law does not give a proportionality between volume and temperature, this is only because of our arbitrary choice of the zero for the Celsius temperature scale.

By measuring temperature from a certain value, called the absolute zero of temperature, Charles's law gives a proportionality between volume and temperature.

Degrees Celsius from the absolute zero are called kelvin (K) (after William Thomson, Lord Kelvin)

The absolute zero of temperature corresponds to approximately $-273^{\circ} \mathrm{C}$

Combining Boyle's and Charles's laws gives:

$P V \propto T$

The kinetic theory of gases, developed in the late $19^{\text {th }}$ century by scientists such as Maxwell, Boltzmann and Clausius, obtains this equation as a consequence of classical mechanics - Newton's laws.
The assumptions made are:

- gas consists of a large number of particles that do not interact, except when they collide elastically
- these particles move with some average velocity and hence have an average kinetic energy

Deriving the gas laws from Newton's laws of motion

Suppose that a particle of mass m is bouncing between two plates with a velocity v.
Then the momentum change at each collision is $2 m v$.
The particle takes h / v seconds to go from one plate to the other. Hence, it hits each plate once every $2 h / v$ seconds.
Thus, the rate of change of momentum is:

$$
F=\frac{\Delta p}{\Delta t}=\frac{2 m v}{2 h / v}=\frac{m v^{2}}{h}
$$

The pressure is the force per unit area:

$$
\begin{aligned}
& P=\frac{F}{A}=\frac{m v^{2}}{A h}=\frac{m v^{2}}{V} \\
& P V=2 . K E
\end{aligned}
$$

This is the pressure exerted by a single particle moving in one direction with the given KE. If we have a large number n of particles, with an a average kinetic energy $\langle K E\rangle$, moving in 3 dimensions, then:

$$
P V=\frac{2}{3} n .\langle K E\rangle
$$

Thus, Boyle's law implies that the kinetic energy of a gas is related to temperature: at constant temperature, the kinetic energy is constant.

Furthermore, if $\quad P V \propto T$ then

$$
\langle K E\rangle \propto T
$$

In other words, kinetic theory establishes a direct link between temperature and the average kinetic energy of the particles of the gas.

Heat is just the kinetic energy of the gas.

- In this model, the absolute zero of temperature is the temperature where the KE is zero.
- Since KE cannot be less than zero ($1 / 2 m v^{2}$), it is not possible to have a temperature less than absolute zero.

