Lecture 10: The nature of heat

Let's get the basic concepts right: What is heat? What is temperature?

Heat flows from a "hotter" object to a "colder" one. In doing so, the hotter object cools and the colder object warms.

Two objects are at the same temperature when there is no heat flow between them.

This is the 0th law of thermodynamics

Temperature is measured in terms of arbitrary units called *degrees*. On the Celsius scale, the temperature of melting ice is called "0" and that of boiling water "100".

The *method of mixtures* permits a quantitative investigation of the way heat flows and of the quantity of heat required to raise the temperature of a certain object by a certain temperature.

Suppose I have 1kg of water at 20°C and 1kg of water at 40°C. If I mix them, the resulting 2kg of water will have a temperature of 30°C

Heat behaves like a fluid whose volume is conserved and which always tends to the same level - the 'caloric' theory.

The gas laws

The study of gases provided the first insights into the nature of heat because:

- the thermal properties of gases are relatively simple
- the necessary experiments were quite simple

The **steam engine** provided a link between heat and mechanical energy - through the working of gas.

What are the attributes of a gas?

PRESSURE the force exerted per unit area. Unit: $N m^{-2}$ (Pa).

VOLUME measured in m³

TEMPERATURE measured in degrees

Robert Boyle (1627-1691) investigated the variation of volume with pressure.

Squeeze a gas, it gets smaller.

Boyle's Law: For a fixed mass of gas , at constant temperature, the pressure is inversely proportional to volume.

Jacques Charles (1747-1823) investigated the variation of volume with temperature.

Cool a gas, and it contracts.

Charles's Law: For a fixed mass of gas, at constant pressure, the volume varies linearly with temperature.

Absolute zero

Although Charles's law does not give a proportionality between volume and temperature, this is only because of our arbitrary choice of the zero for the Celsius temperature scale.

By measuring temperature from a certain value, called the **absolute zero of temperature**, Charles's law gives a proportionality between volume and temperature.

Degrees Celsius from the absolute zero are called *kelvin* (K) (after William Thomson, Lord Kelvin)

The absolute zero of temperature corresponds to approximately -273°C

Combining Boyle's and Charles's laws gives:

$PV \propto T$

The **kinetic theory of gases**, developed in the late 19th century by scientists such as Maxwell, Boltzmann and Clausius, obtains this equation as a consequence of classical mechanics - **Newton's laws**.

The assumptions made are:

- gas consists of a large number of particles that do not interact, except when they collide elastically
- these particles move with some average velocity and hence have an average kinetic energy

Deriving the gas laws from Newton's laws of motion

Suppose that a particle of mass *m* is bouncing between two plates with a velocity *v*.

Then the momentum change at each collision is 2mv.

The particle takes h/v seconds to go from one plate to the other. Hence, it hits each plate once every 2h/v seconds.

Thus, the rate of change of momentum is:

$$F = \frac{\Delta p}{\Delta t} = \frac{2mv}{\frac{2h}{v}} = \frac{mv^2}{h}$$

The pressure is the force per unit area:

$$P = \frac{F}{A} = \frac{mv^2}{Ah} = \frac{mv^2}{V}$$

$$PV = 2.KE$$

This is the pressure exerted by a single particle moving in one direction with the given KE. If we have a large number n of particles, with an a average kinetic energy $\langle KE \rangle$, moving in 3 dimensions, then:

$$PV = \frac{2}{3}n.\langle KE \rangle$$

Thus, Boyle's law implies that the kinetic energy of a gas is related to temperature: at constant temperature, the kinetic energy is constant.

Furthermore, if $PV \propto T$

then

$$\langle KE \rangle \propto T$$

In other words, kinetic theory establishes a direct link between temperature and the average kinetic energy of the particles of the gas.

Heat is just the kinetic energy of the gas.

- In this model, the absolute zero of temperature is the temperature where the KE is zero.
- Since KE cannot be less than zero (½ mv²), it is not possible to have a temperature less than absolute zero.